Extensions 1→N→G→Q→1 with N=C22 and Q=D6⋊S3

Direct product G=N×Q with N=C22 and Q=D6⋊S3
dρLabelID
C22×D6⋊S396C2^2xD6:S3288,973

Semidirect products G=N:Q with N=C22 and Q=D6⋊S3
extensionφ:Q→Aut NdρLabelID
C22⋊(D6⋊S3) = D6⋊S4φ: D6⋊S3/D6S3 ⊆ Aut C22366C2^2:(D6:S3)288,857
C222(D6⋊S3) = C627D4φ: D6⋊S3/C3⋊Dic3C2 ⊆ Aut C2248C2^2:2(D6:S3)288,628
C223(D6⋊S3) = C624D4φ: D6⋊S3/S3×C6C2 ⊆ Aut C2248C2^2:3(D6:S3)288,624

Non-split extensions G=N.Q with N=C22 and Q=D6⋊S3
extensionφ:Q→Aut NdρLabelID
C22.1(D6⋊S3) = D12.30D6φ: D6⋊S3/C3⋊Dic3C2 ⊆ Aut C22484C2^2.1(D6:S3)288,470
C22.2(D6⋊S3) = D122Dic3φ: D6⋊S3/S3×C6C2 ⊆ Aut C22484C2^2.2(D6:S3)288,217
C22.3(D6⋊S3) = C62.31D4φ: D6⋊S3/S3×C6C2 ⊆ Aut C22244C2^2.3(D6:S3)288,228
C22.4(D6⋊S3) = D1220D6φ: D6⋊S3/S3×C6C2 ⊆ Aut C22484C2^2.4(D6:S3)288,471
C22.5(D6⋊S3) = D12.32D6φ: D6⋊S3/S3×C6C2 ⊆ Aut C22484C2^2.5(D6:S3)288,475
C22.6(D6⋊S3) = C62.56D4φ: D6⋊S3/S3×C6C2 ⊆ Aut C2248C2^2.6(D6:S3)288,609
C22.7(D6⋊S3) = D123Dic3central extension (φ=1)96C2^2.7(D6:S3)288,210
C22.8(D6⋊S3) = Dic6⋊Dic3central extension (φ=1)96C2^2.8(D6:S3)288,213
C22.9(D6⋊S3) = C12.6Dic6central extension (φ=1)96C2^2.9(D6:S3)288,222
C22.10(D6⋊S3) = C12.8Dic6central extension (φ=1)96C2^2.10(D6:S3)288,224
C22.11(D6⋊S3) = C62.6Q8central extension (φ=1)96C2^2.11(D6:S3)288,227
C22.12(D6⋊S3) = C2×C322D8central extension (φ=1)96C2^2.12(D6:S3)288,469
C22.13(D6⋊S3) = C2×Dic6⋊S3central extension (φ=1)96C2^2.13(D6:S3)288,474
C22.14(D6⋊S3) = C2×C322Q16central extension (φ=1)96C2^2.14(D6:S3)288,482
C22.15(D6⋊S3) = C2×D6⋊Dic3central extension (φ=1)96C2^2.15(D6:S3)288,608
C22.16(D6⋊S3) = C2×C62.C22central extension (φ=1)96C2^2.16(D6:S3)288,615

׿
×
𝔽